3.313 \(\int \frac{x \sqrt{a+b x^2+c x^4}}{d+e x^2} \, dx\)

Optimal. Leaf size=168 \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 e^2}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} e^2}+\frac{\sqrt{a+b x^2+c x^4}}{2 e} \]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*e) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*
Sqrt[c]*e^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e +
a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e^2)

________________________________________________________________________________________

Rubi [A]  time = 0.216896, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1247, 734, 843, 621, 206, 724} \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 e^2}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} e^2}+\frac{\sqrt{a+b x^2+c x^4}}{2 e} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[a + b*x^2 + c*x^4])/(d + e*x^2),x]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*e) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*
Sqrt[c]*e^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e +
a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e^2)

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x \sqrt{a+b x^2+c x^4}}{d+e x^2} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+c x^2}}{d+e x} \, dx,x,x^2\right )\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 e}-\frac{\operatorname{Subst}\left (\int \frac{b d-2 a e+(2 c d-b e) x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 e}\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 e}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 e^2}+\frac{\left (c d^2-b d e+a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 e^2}\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 e}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 e^2}-\frac{\left (c d^2-b d e+a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )}{e^2}\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 e}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} e^2}+\frac{\sqrt{c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 e^2}\\ \end{align*}

Mathematica [A]  time = 0.119311, size = 167, normalized size = 0.99 \[ \frac{2 \sqrt{c} \left (e \sqrt{a+b x^2+c x^4}-\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{2 a e-b d+b e x^2-2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )\right )+(b e-2 c d) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 \sqrt{c} e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[a + b*x^2 + c*x^4])/(d + e*x^2),x]

[Out]

((-2*c*d + b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])] + 2*Sqrt[c]*(e*Sqrt[a + b*x^2 + c*x
^4] - Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x^2 + b*e*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2
]*Sqrt[a + b*x^2 + c*x^4])]))/(4*Sqrt[c]*e^2)

________________________________________________________________________________________

Maple [B]  time = 0.004, size = 757, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x)

[Out]

1/2/e*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/4/e*ln((1/2*(b*e-2*c*d)/e+c*(x^2
+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b-1/2/e^2*ln((1/
2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^
(1/2)*d-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-
b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a+1/
2/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*
d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*d*b-1/2/e^3/
((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e
^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*c*d^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 9.72263, size = 2327, normalized size = 13.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="fricas")

[Out]

[1/8*(4*sqrt(c*x^4 + b*x^2 + a)*c*e - (2*c*d - b*e)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 +
b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) + 2*sqrt(c*d^2 - b*d*e + a*e^2)*c*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^
2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d
*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 +
2*d*e*x^2 + d^2)))/(c*e^2), 1/4*(2*sqrt(c*x^4 + b*x^2 + a)*c*e + (2*c*d - b*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^4
+ b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + sqrt(c*d^2 - b*d*e + a*e^2)*c*log(-((8*c^2*d^
2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2
- (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d -
2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)))/(c*e^2), 1/8*(4*sqrt(c*x^4 + b*x^2 + a)*c*e + 4*sqrt(-c*d^2 + b*d*e - a*
e^2)*c*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^
2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (2*c*d -
b*e)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c))/(c*e
^2), 1/4*(2*sqrt(c*x^4 + b*x^2 + a)*c*e + 2*sqrt(-c*d^2 + b*d*e - a*e^2)*c*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)
*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 -
 a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (2*c*d - b*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^
2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)))/(c*e^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{a + b x^{2} + c x^{4}}}{d + e x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**4+b*x**2+a)**(1/2)/(e*x**2+d),x)

[Out]

Integral(x*sqrt(a + b*x**2 + c*x**4)/(d + e*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError